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Ca-rich carbonate melts: A regular-solution model, with applications to

carbonatite magma + vapor equilibria and carbonate lavas on Venus
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ABSTRACT

A thermochemical model of the activities of species in carbonate-rich melts would be

useful in quantifying chemical equilibria between carbonatite magmas and vapors and in
extrapolating liquidus equilibria to unexplored PTX. A regular-solution model of Ca-rich

carbonate melts is developed here, using the fact that they are ionic liquids, and can be
treated (to a first approximation) as interpenetrating regular solutions of cations and of
anions. Thermochemical data on systems of alkali metal cations with carbonate and other

anions are drawn from the literature; data on systems with alkaline earth (and other)
cations and carbonate (and other) anions are derived here from liquidus phase equilibria.
The model is validated in that all available data (at 1 kbar) are consistent with single

values for the melting temperature and heat of fusion for calcite, and all liquidi are con-

sistent with the liquids acting as regular solutions.
At 1 kbar, the metastable congruent melting temperature of calcite (CaCO3) is inferred

to be 1596 K, with A/Tfus(calcite) = 31.5 _ 1 kJ/mol. Regular solution interaction param-
eters (W) for Ca 2+ and alkali metal cations are in the range -3 to --12 kJ/mol2; W for
Ca2+-Ba 2+ is approximately -11 kJ/mol2; W for Ca2+-Mg 2+ is approximately -40 kJ/

mol% and W for Ca2+-La 3+ is approximately +85 kJ/moF. Solutions of carbonate and
most anions (including OH-, F-, and SO42-) are nearly ideal, with Wbetween 0 (ideal) and
-2.5 kJ/moF. The interaction of carbonate and phosphate ions is strongly nonideal, which

is consistent with the suggestion of carbonate-phosphate liquid immiscibility. Interaction
of carbonate and sulfide ions is also nonideal and suggestive of carbonate-sulfide liquid

immiscibility. Solution of H20, for all but the most H20-rich compositions, can be mod-
eled as a disproportionation to hydronium (H30 ÷) and hydroxyl (OH-) ions with W for

Ca2+-H30 ÷ _ 33 kJ/mol 2.
The regular-solution model of carbonate melts can be applied to problems of carbonatite

magma + vapor equilibria and of extrapolating liquidus equilibria to unstudied systems.
Calculations on one carbonatite (the Husereau dike, Oka complex, Quebec, Canada) show
that the anion solution of its magma contained an OH mole fraction of _0.07, although

the vapor in equilibrium with the magma had P(H20) = 8.5 x P(CO2). F in carbonatite
systems is calculated to be strongly partitioned into the magma (as F-) relative to coexisting

vapor. In the Husereau carbonatite magma, the anion solution contained an F- mole
fraction of _6 x 10 -5.

Calcite and anhydrite may be present on the surface of Venus, but they would not be
molten at ambient surface temperature (660-760 K) because the minimum melt temper-

ature (eutectic) for the calcite + anhydrite system is calculated to be 1250 K. The Venus
atmosphere contains 5 ppb HF, which implies that the anion solution of a carbonate-rich
magma in equilibrium with the atmosphere would contain a F- mole fraction of _7 ×

10 -3, or about 0.1 wt%. Although this proportion of F is much enriched compared with
the atmosphere, it would have little effect on phase relations of the carbonatite.

INTRODUCTION

Carbonatites are igneous rocks that formed from car-

bonate-rich magmas. The petrogeneses of carbonatites are
imperfectly understood, in part because of uncertainties

in the physical and chemical properties of their parent
magmas. Although the physical and mass-transport prop-

erties of carbonatite magmas are becoming appreciated
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(Treiman and Schedl, 1983; Dawson et al., 1990; Keller
and Krafft, 1990; Watson, 1991; Norton and Pinkerton,

1992), their thermochemical properties have been stud-
ied little (Bradley, 1962; Treiman, 1989). Thus, investi-
gations of carbonatites have not benefited from quanti-
tative thermochemical models such as have been

developed for silicate magmas (e.g., Ghiorso et al., 1983;

Berman and Brown, 1987; Ghiorso, 1987).
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For instance, a thermochemical model of carbonate

melts would provide a quantitative link between the
compositions of carbonatite magmas and the composi-

tions of their associated volatile phases. Carbon dioxide
is obviously important in carbonatite magmas; H20 has
played a prominent role in experimental studies of car-

bonatite genesis (Wyllie, 1989), and the potential impor-

tance of F has recently been reemphasized (Gittins et al.,
1990; Jago and Gittins, 1991). In addition, most plutonic
carbonatites are surrounded by volumetrically significant

zones of metasomatized rock, i.e., fenite (McKie, 1966).
These zones bespeak large fluxes of volatiles associated

with carbonatite magmas. It has been possible to con-
strain the composition of the volatile phases through the

compositions and phases of the solids with which they
equilibrated (e.g., Rubie and Gunter, 1983; Treiman and

Essene, 1984; Kresten and Morogan, 1986; Andersen,
1986). However, it has been impossible to constrain com-
positions of carbonatite magma from fluid compositions,

except in the most general terms. With a quantitative
thermochemical model of carbonatite magmas, the con-

nection between fluid and magma compositions would
be straightforward.

Similarly, a thermochemical model of carbonate melts

would permit extrapolation of known liquidus equilibria to
physical and chemical conditions that have not been studied

experimentally. In this way, a thermochemical model would
provide a structure for understanding the results of experi-

ments already completed, a ready way of applying experi-
mental results to complex natural systems, and an aid in
designing new experimental programs.

In this paper, I propose a thermochemical model of

carbonate-rich magmas, based on regular-solution theory
and the observation that carbonatite magmas are ionic
liquids (Treiman and Schedl, 1983). In the model, all

available data (at 1 kbar) are consistent with a single tem-
perature of melting for calcite (metastable congruent
melting), and a single value for the heat of fusion for

calcite. Similarly, the locations of all liquidus calcite-sat-
urated liquidus surfaces are consistent with the Ca-rich

carbonate melts being regular solutions. Portions of this
model were presented by Treiman (1989), which is su-

perseded by this work.

TEMKIN MELT MODEL

Carbonate-rich melts are ionic melts or fused salts, liq-

uids in which the discrete entities (ions) are charged and

bound by electrostatic forces (Zarzycki, 1962; Sundheim,
1964; Lumsden, 1966; Kleppa, 1977, 1981). Polymeriza-
tion of anions (as in silicate liquids) is unimportant, and

ionic complexes can be treated as distinct ionic species.
Ionic liquids are amenable to relatively simple thermo-

chemical analysis because their cations and anions may be

treated, to a first approximation, as independent solutions.
This approximation is the quasi-lattice or Temkin (1945)

model. It is justifiable because enormous energy would be
needed to exchange, for instance, a cation surrounded by

anions for an anion surrounded by anions (Blander, 1964).

The Temkin model is consistent with ideal behavior in each

ion solution and also with regular behavior, in which there

is heat of mixing but no excess entropy of mixing (Forland,
1955). Here, I use the simplest version of the Temkin mod-

el, in which all cations occupy identical quasi-lattice sites,
as do all anions. This model ignores complexation except
as reflected by regular solution behavior and ignores the

expectation of differing sites in the liquid quasi-lattice. The
Temkin model is only an approximation because local charge

balance does not permit ions of different charges to inter-
change completely freely (e.g., Ca 2+ vs. Na +) and because

common sense (and the Gibbs-Duhem relation) suggest that
different ions affect their surrounding ions in different ways.

For instance, one cannot expect ions of different sizes (e.g.,
Ca 2+ vs. Mg 2+) and charges (e.g., Ca 2+ vs. Na +) to maintain

identical distances and coordinations with surrounding ions.
With these caveats, the Temkin model is a good first

approximation for the properties of many ionic liquids,

including (as I show below) those of Ca- and carbonate-
rich melts to the level of detail permitted by most avail-

able data. In addition, the regular solution model is fa-
miliar in the geological community and is the simplest

formulation of real solutions (e.g., Ghiorso et al., 1983;
Ghiorso, 1987; Berman and Brown, 1987; Helffrich and
Wood, 1989). More physically accurate models for ionic

salts (e.g., the reciprocal-salt or conformal-solution mod-
el: Blander and Topol, 1966; Kleppa, 1977, 1981) may

be better representations of reality, but they are not jus-
tified by the quality and quantity of data available.

INTERPRETATIVE METHOD

For some components in carbonate magmas, thermo-

chemical data can be taken directly from the literature.
But for many major components, like Ca and Mg car-

bonates, and for magmas at high pressure, such data must
be gained indirectly. The most accessible sources of these
data are liquidus phase equilibria (in effect, measure-

ments of freezing point depressions), which can be ma-
nipulated to retrieve heats of fusion and activity-com-

position relationships (Lewis and Randall, 1961).
To simplify the interpretation of liquidus surfaces, sol-

id and liquid phases both must be referred to the same

standard state. For simplicity and consistency with geo-

logical applications, the standard state for a component
is taken as the chemically pure phase in its equilibrium
structure at the temperature of interest. Thus, pure solid

phases below their melting temperatures have activities
of unity; hypothetical pure liquids below their solidifi-

cation temperatures have activities exceeding unity. Ac-
tivities of components in solutions (solid and liquid) are
referred to the same standard state. For solid phases be-

low their melting temperatures, this is a normal solvent
standard state: the ratio of activity to mole fraction for a

component (a/X) is unity for the pure component (X =
l). For liquid solutions phases, this is also a solvent solid

state, but with the pure solvent having nonunit activity
at subsolidification temperatures. The hypothetical pure
liquid in its standard state must have the same structure
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as the solution, which need not be the same liquid struc-
ture as in the pure system at its melting temperature.

Freezing point depression is treated in detail in stan-
dard thermodynamics textbooks (e.g., Lewis and Rand-

all, 1961). Consider the isobaric melting reaction A (sol-
id) _- A (liquid solution) in the system A-B at T < Tr, s,

the congruent melting temperature of A (solid). One can
approach this state in two steps: melting of pure A at T

< Tfos, and isothermal solution of B into the melt and
solid until they are at equilibrium. For the first step, the
free energy of melting pure A at a temperature below T

< Tfu s is given as

AGf, s = - (1)

where zkH°,,(A) is the molar enthalpy change on melting
(heat of fusion) of pure phase A at Tfus (viz., Flood et al.,

1949; Lewis and Randall, 1961, p. 415). Equation 1 as-
sumes that the heat of fusion is not a function of tem-

perature, i.e., the effect of ACe.ru,(A) on melting A is rel-
atively small, which is justifiable for carbonate melt
systems at the present level of precision. Ignoring ACp, fus

in carbonate, chloride, or nitrate systems causes < 1%
error in the AHrus and < 10% error in regular solution

parameters (Treiman, unpublished calculations). This
AG-_,(A) is positive because a melt of pure A composition
is not stable relative to the solid at T < Trus. The second

step is isothermal solution of B into the melt and solid
T Tuntil they are at equilibrium, i.e., AGfus(A) + AGsolution =

0. Substituting this and the definition of free energy
changes with composition into Equation 1 yields a de-

scription of the liquidus surface,

1 - _ 2_°u_(A) = -RT(ln aA,me,t -- In aa,_olia) (2)

where a is activity of a component in a phase, relative to
the standard states given above.

The activity of A in the melt phase can be calculated
from the assumption of regular solution behavior by
means of the activity coefficient 3"A

3"A = aA/XA. (3)

For a multicomponent solution of species A, B, and C,
the heat of mixing is given as

_/-/mix = (hA +nB + nc)(XAXBWAB + XAXcWAc

+ XBXcWBc + XAX.XcWA.¢) (4)

where n is the number of moles of a species present, and

W is the interaction parameter for that pair (or triplet) of

species (Lewis and Randall, 1961). The ternary interac-
tion parameter is assumed here to be zero, although this
value is not required by theory (Helffrich and Wood,

1989). The activity coefficient 3' for species A is then

RTln 3"A= (X2 + XBXc)WAB -]- (X2 -_- XBXc)WAc

- x.x_w._ (5)

(Andersen and Lindsley, 1981). In an ideal solution, all
W= 0, and so 3" = 1. In the Temkin model of ionic

liquids, the cations and anions are treated independently
as regular solutions, each with its own X, n, W, and 3"

terms. Substituting Equations 3 and 5 into Equation 2 for
the system A-B and rearranging into the format y = ax

+ b yields

RT ln(SA,melt ) -- RT ln(aA,,olia)

T
1 -- --

Tfus

X 2
= WAB(1 -- A,melt) ___A/70s(A). (6)

T
1 -- --

T_u,

If the phase A is purely component A, its activity is unity,

and Equation 6 simplifies to

_ , _ -- X 2RT ln(X'Amelt) WA(1 A,melt) + zMrT0 (A). (7)
T T

1---- 1
Tf.s Tfu_

For points on this A-saturated liquidus, a graph of -RT

In(XA,me_t)/(1 -- T/Tfus) vs. (1 - XA,melt)2/(1 -- T/T_s) should
yield a straight line of slope WAB and intercept AH°u_(A)
(e.g., Flood et al., 1949). Typically, phase-equilibrium ex-

periments yield bracketed ranges in T and X within which
a liquidus must lie, and so this graph would consist of
brackets through which the straight line must pass. These

brackets can typically be satisfied by ranges of WAB and
zXH°_(A).

These descriptions of the liquidus surface can be relat-
ed to the Temkin model of ionic melts with a few defi-
nitions of standard state for ion activities. As with solid

and liquid phases, the reference state for an ionic species
is a crystalline solid containing that pure ionic species at

the temperature of interest. For example, systems in equi-
librium with the pure solid phase L"+M "- have activities
of ionic components L n+ and M" of unity. If a solution

phase contains both L "+ and M"- ions,

a_.+M°- = aL°+.a_.-. (8)

If a solid phase contains only a single cation or anion
species, the activity of that ion species is unity, and the

activity of the phase is equal to the activity of the other
ion species. Activities of individual ion species in melt

solutions can be determined by their mole fractions and
regular solution interaction parameters (Eqs. 3 and 5).
The activity of a component in a melt solution is refer-

enced, as before, to the pure component in its equilibrium
phase at that T. Thus, in a melt in equilibrium with solid,
pure L "+ M"-, the activity product aL-+'aM- is unity.

Other thermochemical quantities are calculated with

standard methods. The molar entropy of melting is cal-
culated from the heat of melting as

mSfus = zX/Tfus/Tfu s (9)
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TABLE 1. Melting of alkali and alkaline earth carbonates: Molar
properties at 1 bar

Compound K kJ/mol J/(moI-K) J/(moI-K) cma/mol

Na2CO3 1131 29.7 26.3 - 8.5 4.7*
K2CO3 1171 27.6 23.6 - 1.1 7.5**
Li2CO3 996 44.8 44.8 -7.6 2.6
CaCO3t 1583 30.5 _+ 1 19 _+ 2.5 -- --
CaCO3:!: 1463 38.5 _+4 26 _+ 3 -- --

Note: enthalpy and entropy from Janz et al. (1979), heat capacities
from Selman and Maru (1981), and volumes from Klement and Cohen
(1975) and Janz et al. (1979).

* Volume from Klement and Cohen (1975). Janz et al. (1979) gave 7.5
cma/mol.

** Volume from Klement and Cohen (1975). Janz et al. (1979) gave 10.3
cma/mol.

t Appropriate for Ca-rich melts, and those containing significant K vs.
Na. Recalculated from Ferland (1955), using Tf,, extrapolated from high
pressure. These data are consistent with high-pressure determinations;
see text.

:_Appropriate for lower temperature, Na-rich melts. Recalculated from
Forland (1955) and Flood et al. (1949).

because congruent melting of a pure phase is isothermal.

Volume changes on melting can be derived from direct

measurement or from polybaric equilibria by the Clau-

sius-Clapeyron equation:

-- ASr., (10)
A Vfus (dP/dT)f,s"

Extrapolation of heats of melting over temperatures and

pressures follow from the partial derivatives of enthalpy:

0AHf, s _ AC, f,s and 0AHr,_ ATfus (11)
OT " OP

where A_p.f,, is the difference in heat capacities between

molten and solid phases (Tables 1 and 2). Note that

ACp.fu_ is negative for the alkali carbonates (Tables 1 and

2), as it is for many ionic salts (Robie et al., 1979; DeKock,

1986). A negative ACp, fu s suggests premelting structural

changes in the solid and does not violate the second law

of thermodynamics.

ALKALI CARBONATES

Alkali carbonates are inferred to be important constit-

uents of some carbonate magmas (LeBas, 1981; Dawson

et al., 1987, Gittins, 1989), although few carbonatites

contain alkali carbonate minerals. There is an extensive

literature on melting and mixing properties of the alkali

carbonates, from which much of Table 1 is drawn directly

or calculated.

For volume changes on fusion, A Vf.s, for the alkali

carbonates (Table 1), the data of Klement and Cohen

(1975) are preferred over those of Janz et al. (1979), which

are larger than those of Klement and Cohen by _20%.

The discrepancy in A V r., lies in the volumes of the solid

phases, as both groups report comparable melt volumes.

Klement and Cohen's (1975) data are preferred, because

their solid volumes are from high-temperature X-ray dif-

TABLE 2. Melting of alkali and alkaline earth carbonates: Molar
properties at 1 kbar

Compound K kJ/mol J/(mol. K) J/(mol. K) cm3/mol

Na2CO3 1145" 30.1 26.3 -8.0 4.7
K2CO3 1200" 28.2 23.5 -1.1 4.8
Li2CO3 1003"* 45.0 45.0 -7.6 2.6
CaCO3 1596t 31.5 +_ 1 19.7 _+ 0.7 -- 2.5 _+ 0.1
MgCO31: 1750 32 _+ 25? 18 _+ 15? -- 0.7 _+ 0.6?

Note: heats and entropies of alkali carbonates extrapolated from 1-bar
values; Tf_,measured; volumes from high-pressure phase equilibria. Data
for alkaline earth carbonates as derived in text.

* Koster van Groos and Wyllie (1966).
** Klement and Cohen (1975).
_-Extrapolated from Irving and Wyllie (1975); see text.
:_Tfo,extrapolated from Irving and Wyllie (1975). Other values estimated

from liquidus surface of Ragone et al. (1966) without consideration of
possible experimental errors. See text.

fraction, rather than from density measurement (used by

Janz et al., 1979).

CALCIUM CARBONATE

Calcite is the most abundant mineral in most carbon-

atites, intrusive and extrusive (Bailey, 1993), and so cal-

cium carbonate is likely to be among the most important

components in carbonate magmas. The melting proper-

ties of CaCO3 at 1 bar and 1 kbar must be inferred in-

directly because calcite does not melt congruently at these

pressures; pure calcite decarbonates below 40 bars (Ba-

ker, 1962) and melts incongruently to liquid + vapor

between 90 and _7000 bars (Irving and Wyllie, 1975;

Huang and Wyllie, 1976). However, melting and solution

properties of CaCO3 can be measured directly for melts

that are not too rich in CaCO3 component, given a tem-

perature for its (metastable) congruent melting.

All high-pressure liquidus surfaces and most 1-bar li-

quidus surfaces are consistent with a single value for the

temperature of melting (True) and heat of fusion

A/70u_(calcite); unless specifically noted, all discussion here

refers to numerical values consistent with l-kbar liquidus

equilibria. However, some 1-bar liquidi are consistent

with a separate set of Tf_s and AH°_s(calcite) (Table 1); it

is possible that Ca-rich carbonate melt might occur in

two distinct structures at 1 bar (viz., Forland, 1955). For

the most part, melting properties derived for high pres-

sure are appropriate for geological applications.

Melting temperature

The congruent melting temperature for pure CaCO 3 in

the calcite structure, Trus(calcite), can be estimated by ex-

trapolating the high-pressure congruent melting curve to

lower pressures (Irving and Wyllie, 1975; Huang and

Wyllie, 1976). Between l0 and 20 kbar, the congruent

melting curve for CaCO3 has a slope of -12.5 K/kbar,

implying a congruent Tf.s(calcite) of 1583 K at 1 bar and

1596 K at 1 kbar (Tables 1 and 2). This 1-kbar Tf_,(calcite)

is just above the experimentally determined bracket for

, :) 2 •
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Fig. 1. Regular-solution interpretation of calcite-saturated li-
quidus in CaCO3-BaSO4-CaF2 (500 bars CO2, Kuellmer et al.,
1966), following Eq. 12. See Table 3 for definition of QI. Open
and filled symbols represent liquid-only and liquid + calcite
experiments, respectively. Lines from each data point represent
a conservative estimate of errors (+ 5 K in T; +0.2 wt% in X),
showing only the error bar halves that contribute to uncertainty
in slope and intercept. The liquidus surfaces, linear with slope
W and ordinate intercept of AH°+s(calcite), should lie between
these groups of experiments. Within error, all data are consistent
with AH°us(calcite) = 31.5 + 1 kJ/mol and Wca2÷_Ba2+= --11 +
9 kJ/moP (thin solid lines).

incongruent melting [1573-1593 K; Wyllie and Tuttle,
1960 (temperatures corrected by -32 K per Gittins and
Tuttle, 1964); Irving and Wyllie, 1975], and is consistent

within error with much of the liquidus equilibrium data

for 1 bar (Forland, 1955). As discussed below, some li-

quidi at 1 bar are consistent with Tfu,(calcite) = 1463 K.

Heat of melting

High pressure. The locations of calcite-saturated liqui-
di at high pressure (500-1000 bars) imply that

A/7Os(calcite) = 31.5 +_ 1 kJ/mol. This value is con-
strained most closely by the location of the calcite-satu-
rated liquidus in the system CaCO3-CaF2-BaSO4 (Kuell-

mer et al., 1966), and is consistent with all available
determinations of calcite-saturated liquidi at high pres-

sure, in which calcite is a pure phase.
The experimental location of the calcite-saturated li-

quidus in the system BaSO4-CaCO3-CaF2 (Fig. 1, Table
3; Kuellmer et al., 1966) is the most restrictive available
constraint on A/7°u,(calcite). Calcite grown in this system

is effectively pure; it does not accept significant SO4z- of
F- in solid solution, and Kuellmer et al. (1966) reported
no indication of solid solution with Ba. To retrieve

A/70us(calcite) from this system, one substitutes Temkin

melt activity models (Eq. 5) for individual anion and cat-
ion solutions into Equation 8 and then substitutes the
resultant melt activity model into Equation 7, the de-

scription of the liquidus surface. The anion interaction

parameters WCO_--F-, Wso_--v-, and Wco_-.so_ are approx-

TABLE3. Expressions for ordinate Q values in Figs. 1 and 2

Ol = -RTIn(Xc.++ +......... "Xco 2+, ........ )/(1-_)

05 = - [RT In(Xc.+++.......... ) - RT In(ac.c........ )1 1 --

[RT In(Xc.++.........."Xco+.......... ) + WCO+--OH(1 -- XO......... )2]
Q6=

(1 - T/T,J

[R T In(Xc.++. .......... X co+ .......... ) It- WCO3 2 --OH (1 -- XCO 2 ....... )2]
Q7=

(1 - T/T_,)

imately zero (derived below, viz., Table 4), so Equation
8 reduces to

R T ln(Xca2+,cati .... It "Xco]-,ani .... It)

T
1 -- --

Tfu,

(1 -- Xca2+,cati .... 1,) 2

Wca2+_Ba2+

T
1 -- --

Try,

+ AH r°,,(calcite). (12)

The data of Kuellmer et al. (1966) are recast by this equa-

tion in Figure 1. If the Temkin regular solution model is
valid, and if the anion interaction parameters are effec-

tively zero, the liquidus surface separating the liquid-only
data points (open symbols) and liquid + calcite points

(filled symbols) should be representable as a straight line
with slope of WCa2+_Ba 2+ and a Y-axis intercept of AH f°,,(cal -

cite). The liquidus can in fact be represented as a straight
line consistent with the error bars of all points, suggesting

A/7O,(calcite) = 31.05 ___0.25 kJ/mol. However, these
tight error limits are dictated by a single liquid-only point

(the open symbol that extends below the lines). The con-
servative approach taken here is to assume that point is
in error and to estimate AH °,,(calcite) = 31.5 __+1 kJ/mol

and WCa_+-Ba_+= --11 __+9 kJ/mol 2 from the remaining
points (Fig. 1). The error limits correspond to a temper-
ature uncertainty of + 5 K and a compositional uncer-

tainty of +0.2 wt% in the most abundant component.
This value for A/7°._(calcite) is consistent with all avail-

able high-pressure determinations of liquidi saturated in
pure calcite. Figure 2a-2f show many sets of calcite-sat-

urated liquidi recast following Equation 7. Within uncer-
tainty, all these liquidi are consistent with AH°._(calcite)
= 31.5 _+ 1 kJ/mol. This value is essentially identical to

the only independent estimate of AH°,,(calcite) at high

!ili__̧,_ •
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pressure, 29 kJ/mol (Bradley, 1962). Bradley assumed that
1-kbar melts in CaCO3-Ca(OH)2 were ideal solutions and

performed an analysis of the freezing point depression
similar to that here. Results here on anion solutions are

consistent with near-ideal mixing of carbonate and hy-

droxide anions (Fig. 2c, Table 4).
One bar. Most of the limited experimental data on the

melting properties of calcite at 1 bar are consistent with

results from high pressure: Tf, s(calcite) = 1583 K and
AH°,,(calcite) = 31.5 4- 1 kJ/mol [Table 1; Flood et al.,
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Fig.2. Regular-solutioninterpretationofcalcite-saturatedli-
quidifromotherhigh-pressureexperiments.Openandfilled
symbolsrepresentliquid-onlyandliquid+ calciteexperiments,
respectively.SeeTable3forexpressionsofordinate'Q'values.
Heavylinesfromeachdatapointrepresentaconservativeesti-
mateoferrors(_+5K in T; +0.2 wt% in X), showing only the
error-bar halves that contribute to uncertainty in slope and in-
tercept. The liquidus surfaces, linear with slope W and ordinate
intercept of AH°us(calcite), should lie between these groups of
experiments. Thin solid lines encompass range of liquidus sur-
faces permitted by these data (with error bars), and AH °us(calcite )
= 31.5 +_ l kJ/mol (Fig. 1); the given range of W values is for
these solid lines. (a) CaCO3-Na2C03 (l-kbar CO2; Cooper et al.,
1975), following Eq. 7. WCa2+_Na+ = -6 _+ 2 kJ/moP. (b) CaCO3-
K2CO 3 (1-kbar CO2; Cooper et al., 1975), following Eq. 7.

4----

WCa2+_K + = --14.5 _+ 2.5 kJ/mol 2. (c) CaCO3-Ca(OH)2 (1-kbar
CO2; Wyllie and Tuttle, 1960; published temperatures corrected
by -32 K according to Gittins and Tuttle, 1964), following Eq.
7. WCO_--OH = 2.3 --+2.3 kJ/mol 2. (d) CaCO3-CaF2 (Gittins and
Tuttle, 1964; Kuellmer et al., 1966), following Eq. 7. The data
sets are not consistent within error limits; ignoring the two dis-
crepant points (ordinate values of 30.5 and 32) permits
Wco_ -F- = 0 --+ 2 kJ/mol z. (e) CaCO3-MgCO3 (10-kbar CO2;
Byrnes and Wyllie, 1981), following Eq. 6. Activities of CaCO3

in calcite calculated from Anovitz and Essene (1987). Wca2+_Mg2+=
--40 + 30 kJ/mol 2. (f) CafO3-fa(OH)2-La(On)3 (l-kbar CO2;
Jones and Wyllie, 1986), following Eq. 13. WCa2+__3÷= 85 -----50
kJ/moF. (g) CaCO3-H20 (1-kbar CO2; Wyllie and Turtle, 1960,
temperatures corrected by -32 K according to Gittins and Tur-
tle, 1964), following Eq. 15. Wca2._..o+ = 33 + 2 kJ/mol z.

1949; Forland, 1955; the location of the calcite-saturated

liquidus in CafO3-Na2CO3 by Poletaev et al., 1975, spans
too small a composition range to constrain AH°us(Calcite)].

However, the liquidus position in the CafO3-Na2CO3

system at temperatures below approximately 1170 K is

consistent with Tfus(calcite) = 1463 K and AH°us(calcite)
38 kJ/mol (Table 1; Flood et al., 1949; Forland, 1955).

To account for these discrepancies, Forland (1955) sug-

gested that lower temperature melts in CaCO3-Na2CO3

do not have the same structure as higher temperature

melts and melts in other systems (notably K-bearing).
There is no evidence that the low-temperature structure

persists to higher temperature or pressure in the Ca-rich
systems examined here.

Extrapolations of Trus(calcite) and AH°u_(calcite) from

high pressure are consistent with most of the 1-bar liqui-
dus experiments of Forland (1955), who calculated both

values from the compositions of melts saturated with CaO

(lime) in the systems CafO3-Na2CO3, CaCO3-K2CO3, and
CaCO3-NaKCO3 as functions of CO2 pressure between
1203 and 1273 K. Compositions were measured by weight

loss (CO2 loss); a (calcite) was calculated from measured
CO2 pressure and the known pressure of CO2 in equilib-
rium with calcite and CaO; uncertainties were not given
and cannot be evaluated. The linear correlation of AGr._

(calcite) and T for the systems CaCO3-K2CO 3 and CaCO3-
NaKCO3 implied Tf_(calcite) _ 1523 K and AH°s(calcite)

35 kJ/mol. The original data are consistent with

T_(calcite) = 1583 K (extrapolated above from high-pres-
sure equilibria),which yields AH°_(calcite) _ 30.5 kJ/mol,
consistent with high-pressure phase equilibria. Liquidus ex-

periments at high Ca contents and higher temperatures in
the system CaCO3-Na2CO3, are also consistent with the high-
pressure values, although data are limited.

However, at lower temperatures and lower Ca con-
tents, the CaO-saturated liquidus in CaCO3-Na2CO3 is
not consistent with True(calcite) and AH°u_(calcite) from

high-pressure phase equilibria. Rather, Forland (1955)
found that these liquidus determinations suggested

Tr_(calcite) = 1463 K and AH°_(calcite) _ 37.5 kJ/mol.
This higher A/7°_(calcite) and lower Try(calcite) are also

consistent with the earlier liquidus experiments of Flood

et al. (1949). They determined the CaO-saturated liqui-
dus surfaces in CaCO3-Na2C03, CaCO3-K2CO3, and

CaCOa-Li2CO3 under 1 bar C02, from 1244 to 1378 K.
Activities of calcite in the melt solutions were calculated

from the pressure of CO2 in equilibrium with calcite and
lime; uncertainties were given only as error bars on graphs

and cannot be readily evaluated. Flood et al. (1949) took
the melting temperature for calcite to be 1613 K, used a
molecular mole fraction model for melt activities, and

calculated (from Eq. 7) that AH°_(calcite) = 14.2 kJ/mol.
Recalculating their data for CaCO3-Na2C03 for melting

temperatures of 1583 or 1463 K and with a Temkin melt
model (e.g., ionic fractions) yields AH°_(calcite) _ 39 kJ/
mol, consistent with Forland's (1955) data on Ca-poor

compositions in CaCO3. The determinations for CaCO3-

K2CO3 and CaCO3-Li2C03 of Flood et al. (1949) are more
scattered and are consistent with either pair of Tf_(calcite)

and AH °u_(calcite).

To explain the discrepancies in AH°_(calcite) and
True(calcite), Forland (1955) suggested that the more Na-
rich and lower-temperature melts in CaCOa-Na2CO 3 have

a different structure from those at higher Ca contents and
temperatures. On the basis of the AHf_(calcite) values,
the Ca-rich melt structure is present in all systems at high

pressure. Another speculative explanation is that the sol-

id in the CaCO3-Na:CO 3 experiments was not actually
CaO but a mixed oxide phase in CaO-Na20. I am aware,
however, of no reports of mixed Na-Ca oxide phases.

Melt volume

The volume change on melting calcite at high pressure
may be calculated from Equation 9. The entropy of fu-
sion, ASrus(calcite), is calculated from AH°_(calcite) and

True(calcite), as in Table 2. The slope of the polybaric
congruent melting for calcite curve is 80 K/bar (Irving

and Wyllie, 1973, 1975), yielding A V ru_(calcite) = 2.5 _
0.1 cm3/mol at high pressure. This value is comparable

with A V ru_for Li2CO3, but significantly smaller than those
for K2CO 3 and Na2CO 3 (Table 2).

The molar volume of CaCO3 melt could now be esti-
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TABLE 4. Mixing of ions in molten salts: Regular solution pa-
rameters

W Counter
Ions (kJ/tool 2) ion Reference

CO_--OH- -2.3 _+ 2.3 Ca 2÷ 1
_0 Na+ 2

CO_ -F- 0 _+ 2 Ca 2÷ 1
-2 K+ 3

CO_--CI- -1.7, 0 Na+ 3, 4
CO_ -Br - 1.7 Na + 4
CO_--SO_- 0 Na + 5

0 _+ 1.5 Ca 2+ 1
CO_ -PO,*- > 65? Ca2+ 1
CO_--O 2- _0 Na+ 2
COX--O_ t0 Na ÷ 2
F -OH +4.3 Ca2+ 6
F -SO_- _0 Na+ 7
Ca2+-Na + -6 _+ 2 COX- 1

- 10 CO_ 8
Ca2+-K + 14.5 _+ 2.5 GO_- 1

- 24 COX 8
Ca2+-Li + -2.5 CO_ 4
Ca2+-HaO + 36 _+ 2 CO_--OH- 1
Ca2+-Mg 2+ -40 +_ 20 CO_ 1
Ga2+-Ba 2+ -11 _+ 9 CO_ -SOX- 1
Ca2+-La 3+ +85 _+ 50 CO_--OH- 1
Mg2+-K + -20 _+ 30? CO_ 1
Na+-K + -5.6 CO_ 9
Na+-Li + - 11.2 CO_- 9

Note: 1 = this work; 2 = Selman and Maru (1981); 3 - from phase
diagrams in Levin et al. (1964, 1969); 4 = Lumsden (1966); 5 = Flood et
al. (1952); 6 = average value from Tacker and Stormer (1993); 7 = average
value from Kleppa and Julsrud (1980); 8 = Ferland (1955) and recalculation
of Flood et al. (1949); 9 = average value from Andersen and Kleppa (1976).

mated from this if the molar volume of solid CaCO3 were

known. At its 1-kbar melting temperature, CaCO 3 would

be in the CaCO 3 (V) polymorph (Carlson, 1983); unfor-

tunately, molar volumes have been measured only to 1148

K and 1 bar, where CaCO3 (V) is the stable polymorph

(Mirwald, 1979). Recklessly extrapolating molar volume

and compressibility data for CaCO 3 (IV) (Mirwald, 1979)

to 1583 K and 1 kbar, I estimate a molar volume for

solid CaCO 3 of 39 cm3/mol. This value leads to a molar

volume for liquid CaCO 3 of 41.5 cm3/mol and a density

of 2.4 gm/cm 3. This density is comparable with the 2.2

gm/cm 3 inferred for a Ca-rich carbonatite magma (Nes-

bitt and Kelly, 1977).

Structures of CaCO3-rich melts

For modeling Ca-rich carbonate melt systems, it seems

reasonable to accept AHfus(calcite) and Tfus(calcite) from

the 1-kbar experiments (Table 2) and as extrapolated to

other pressures (Table 1). There are no obvious problems

with experiments or interpretation to explain the differ-

ences between the inferences from high-pressure phase

equilibria and the results of Flood et al. (1949) and some

results of Forland (1955). It is quite reasonable to infer,

as did Forland (1955), that carbonate melts at low pres-

sure can adopt multiple structures. The structure ob-

tained at high pressure (1 kbar) seems to be retained at 1

bar for compositions rich in Ca and those containing sig-

nificant K; for these melts, AH°us(calcite) = 31.5 _+ 1 kJ/

tool and Tfus(calcite) = 1583 K. For melts relatively rich

in Na at low pressure and relatively lower temperature,

AH%(calcite) _ 38.5 kJ/mol, and Tf_(calcite) = 1463 K.

On the basis of molar entropies, one may speculate that

the former melts are structurally comparable to molten

K2CO3 and the latter are structurally comparable with

molten Na2CO3 .

MAGNESIUM CARBONATE

The common presence of magnesian calcite, dolomite,

and magnesian silicates in carbonatites shows that mag-

nesium carbonate is an important component in carbon-

atite petrogenesis. Unfortunately, data on the melting and

thermophysical properties of magnesium carbonate are

either absent or uncertain. Dolomite, CaMg(CO3)2, is the

most common Mg-bearing carbonate in carbonatites, but

it decarbonates at low pressure and melts incongruently

at high pressure. In addition, there appear to be no avail-

able liquidus equilibria that can be used as above to de-

rive its melting properties. Data on Mg in carbonate melts

must now come from the limited studies available in-

volving MgCO3, magnesite.

Magnesite melts incongruently at pressures below 25

kbar, and the hypothetical congruent melting tempera-

ture must be extrapolated from there to the range of in-

terest. Using the high-pressure liquidus determinations of

Irving and Wyllie (1975), the 1 kbar congruent melting

temperature for MgCO3 may be extrapolated as 1753 K.

The AH °o,(magnesite) is very poorly determined by the

single available liquidus location, in MgCO3-KzCO3 (Ra-

gone et al., 1966), for which magnesite is not a solid so-

lution. Taken at face value, the brackets of Ragone et al.

(1966) on the magnesite-saturated liquidus surface only

restrict AH°,,(magnesite) to a value of 32 _+ 25 kJ/mol

and (Table 2), with a corresponding entropy of fusion of

18 + 15 J/(mol.K) (Table 2) and a W_,_+__+ of -20 + 30

kJ/moF. However, including reasonable experimental un-

certainties in the analysis (5 K and 0.2 mol% MgCO3) only

restricts AHf°,,(magnesite)to >7 kJ/mol and WM,=+_K+ to

< 10 kJ/moF. Clearly, much work remains.

THERMOCHEMISTRY OF SOLUTION

In the regular-solution model, there is a heat effect in

the formation of a solution, but no entropy effect beyond

that of random mixing of constituents (Eq. 4; viz., Lewis

and Randall, 1961). The heat effect is described by a sin-

gle interaction parameter, W, for each possible pair (or

multiplet) of species in a solution. For a Temkin ionic

solution, there are independent Ws for the cation and

anion solutions. The regular solution parameters W are

obtained simultaneously with estimates of AHru_, and so

have already appeared above in discussions of Figures 1,

2, and 3.

Anion mixing

It is likely that the anion solution of carbonatite mag-

mas is dominated by the carbonate anion, but other an-

ions may play an important or essential role in carbonate

petrogenesis. For instance, the presence of OH anions

• ? : • •; i:_ ¸_
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permits carbonate-rich magmas to melt at geologically
reasonable temperatures (Wyllie and Tuttle, 1960; Wyl-

lie, 1989), and fluoride anions are inferred to have an

equally large effect on liquidus phase relations (Gittins et
al., 1990; Jago and Gittins, 1991).

The anion solutions (Temkin model) in carbonate-rich

melts are nearly ideal for all nonpolymerizing anions (Ta-
ble 4): "... mixed anion-common cation fused salts of-

ten are very nearly ideal solutions" (Kleppa and Julsrud,
1980). Data are available from Ca-rich and some other

binary systems on the interaction of carbonate anions
with fluoride and other halide, hydroxide, oxide, perox-
ide, and sulfate ions (Table 4). W values constrained here
include those for CO_--OH- (Fig. 2c) and CO_--F- (Fig.

2d). Values of W in Table 4 for all anion solutions except

carbonate-orthophosphate are near zero, confirming their

nearly ideal behavior.
Mixing of sulfate and carbonate in ionic melts appears

essentially ideal. Flood et al. (1952) studied melts in the

system Na2CO3-Na2SO4-CO2 for electrochemical appli-
cations, and found that the melts behaved as ideal solu-
tions. The ideality of carbonate-sulfate mixing extends to

Ca-rich compositions, as the calcite-saturated liquidus
surface in CaCO3-CaSO4 at 1 bar (Fuerstenau et al., 1981)

is consistent with Wco_-_so_- = 0 kJ/mol 2, if AH °us(calcite)
= 31.5 kJ/mol (Fig. 3).

Mixing properties of carbonate and sulfide anions would
be very useful in understanding redox states of natural

systems and in some carbonatite-hosted ore deposits, but
no definitive data are available. The liquidus location in

CaCO3-Ca(OH)2-CaS at 1 kbar by Helz and Wyllie (1979)
cannot be interpreted uniquely here because WS2-.OH is
not known. Their data on the binary join Ca(OH)2-CaS

and estimates of the melting temperature and heat of fu-
sion for CaS suggest that Ws 2-.oH is approximately + 15

kJ/mol2; this value is obviously suspect. The liquidus lo-
cation in CaCO3-CaSO4-CaS determined at low pressure

by Fuerstenau et al. (1981) cannot be interpreted unam-

biguously here because Ws2-.so,_ is not known. However,
if Ws 2-.so,_ is taken as zero, Ws2-.co_ must be near + 100
k J/tool.

The behavior of phosphate may be far from ideal. The

mixing of carbonate and orthophosphate (PO43-) anions
was suggested to be nearly ideal by analogy with the mix-

ing of carbonate and sulfate anions (Table 4; Treiman,
1989). However, Tacker and Stormer (1993) have shown
that solutions of molten calcium orthophosphate and other

calcium salts (hydroxide, chloride, and fluoride) are not
ideal, with regular-solution interaction parameters more

negative than -20 kJ/moP. They suggested further that
carbonate-orthophosphate mixing might also be non-

ideal. The data of Biggar (1969) appear to be the only

liquidus determinations relevant to the mixing of alkaline
earth carbonates and phosphates. His experiments yield-

ed only a single bracket on the calcite-saturated liquidus

in a system containing orthophosphate. Taken at face val-
ue, this liquidus bracket suggests Wco_-.PO,_- _ __+65 kJ/

tool 2, assuming a symmetrical regular solution, AH °us(cal-

1800

.--.- 1600 _.L C__C+L
I._ 1400

1200 AH + CC

0 012 ' 0'.4 0'.6 o'.8
X(CaCO 3 )

Fig. 3. Liquidus phase diagrams for CaCO3-CaSO4: phases
are CC, calcite (CaCO3); AH, anhydrite (CaSO4), not including
polymorphic transitions; and L, liquid. Solid lines are as pre-
dicted by the regular-solution model (Eq. 7) and ideal mixing of
CO_- and SOl (Table 4) for a total pressure of _ 100 bars. Open
squares and dotted lines are experimental determinations of the
liquidus and solidus by differential thermal analysis (Fuerstenau
et al., 1981). Predicted and experimental positions of the calcite-
saturated liquidus agree within error. The experimentally deter-
mined position of the anhydrite-saturated liquidus is not con-
sistent with the predicted liquidus and does not extrapolate to
the known melting temperature of anhydrite. Since Fuerstenau
et al. (1981) did not characterize their experiment products, it is
possible that their liquidus surface represents growth of a mixed
anion solid that melts incongruently.

cite) = 31.5 kJ/mol (Table 2), Wco]--OH- = --2.3 kJ/mol 2

(Table 4), and Wpo_--OH- _ --27 kJ/moP (calculated from
Table 4 of Tacker and Stormer, 1933). However, Biggar

(1969) suggested that these experiments may be faulty

and that the liquidus may lie at even higher temperatures,

in which case Wco{ -PO_ would be even larger. Such a
large positive Wco_ -Po4'- implies that some carbonate-rich
and phosphate-rich melts might be immiscible. In nature,

phosphate-rich segregations (called phoscorite or cama-
forite) are common in some carbonatites (e.g., Eriksson,

1989), and it has been suggested they form by carbonate-
phosphate liquid immiscibility (Lapin, 1976). Continued
experimentation will be required to understand the ther-

mochemistry of phosphate-carbonate mixing.
There are few quantitative data on the mixing behavior

of carbonate and silicate anions in carbonate melts. The

mixing of carbonate with orthosilicate (SiO44-) may be
close to ideal (Treiman, 1989). However, the limited data

available (in the system CaO-SiO2-CO2-H20: Wyllie and
Haas, 1965) are difficult to interpret because the propor-

tions and speciations of H20 in the melts are not known.
Mixing of carbonate anions with more polymerized alu-
minosilicate anions is far from ideal, as shown by the

immiscibility of carbonate and silicate melts. This liquid
immiscibility covers a wide range of synthetic and natural

compositions (e.g., Koster van Groos and Wyllie, 1966;
Treiman and Essene, 1985; Kjarsgaard and Hamilton,

1989). Even in compositions without immiscibility, car-
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bonate anions tend to form clusters that exclude poly-
merized silicate anions (Mysen and Virgo, 1980). The

degree of this nonideality is a function of the composition
of the silicate melt (Mysen and Virgo, 1980; Fine and

Stolper, 1985) and remains to be characterized fully.

Cation mixing

Within the accuracy limits of available data, cation
mixing in Ca-rich carbonate melts is adequately de-

scribed by the regular-solution model. The regular-solu-
tion parameters W in Table 4 are taken from the litera-

ture and developed here (Figs. 1, 2a-2b, 2e-2f, and 3).
Regular-solution interaction parameters for Ca 2+ and
monovalent and divalent cations tend to be moderate

and negative, suggesting the association of unlike cations
in the melt. The only value for a trivalent cation, La 3+,
is large and positive.

Alkali cations. The interaction parameters W for Ca-

Na and Ca-K carbonate systems at high pressure (Table
4) were derived in concert with AH 0us(calcite ) from data
of Cooper et al. (1975) in Figure 2a and 2b. The

Wc_2+ K+ value for 1 bar are significantly higher (Table 4,
based on Flood et al., 1949, and Forland, 1955); the source

of the discrepancy is unknown. A Ca2+-Li + interaction

parameter is available in the literature (Lumsden, 1966).
The WNa+-K+ and WN,+.Li+ of Table 4 are averages from
the data of Andersen and Kleppa (1976); their precise

calorimetry showed that both values are slight functions
of composition across the respective joins.

Alkaline earth cations. Very few data are available for

the estimation of solution parameters for alkaline earths
(besides Ca) in carbonate melts. The value for Wca2+ aa2+

was defined in Figure 1 during determination of
AH °us(calcite).

To estimate the W interaction parameter for the Ca 2+-
Mg 2+ cation solution in carbonate melts, Equation 6 and
the activity-composition model of Anovitz and Essene

(1987) can be applied to the liquidus phase equilibria of

Byrnes and Wyllie (1981). Figure 2e shows that liquidus,
with the range of permissible liquidus locations forced
through AH°us(calcite) = 31.5 _+ 1 kJ/mol on the vertical

axis. The permissible liquidus locations correspond to
W = -40 _+ 30 kJ/mol. This result must be used with

caution because the liquidus of Byrnes and Wyllie (1981)
was determined at 10 kbar; the activity-composition
model has been extrapolated somewhat beyond its known

range of applicability, and the validity of the activity
model is in question (McSwiggen, 1993). As a further

caution, a similar analysis performed on the 27-kbar li-
quidus in CaCO3-MgCO3 (Irving and Wyllie, 1975) is

consistent with a regular solution W of approximately
zero. Obviously, data in this system are too sparse for
firm conclusions, but changes in melt structures are pos-
sible.

Other cations. Interpretable liquidus data for other cat-
ions in carbonate melts are limited to lanthanum in the

system CaCO3-Ca(OH)2-La(OH)3 (Jones and Wyllie,

1986). As calcite accepts little OH or La 3+ in solid so-

lution, the calcite-saturated liquidus may be modeled as

[
-- _[RT ln(Xc_2+,_ti .... It"/CO2-,ani .... It)

k

= Wc.2+__3+(1 - Xc.2+_.,i .... '02 + zSdT°u_(calcite) (13)
T

1 -- --

following Equations 7 and 12. This equation is in the
format y = ax + b; when it is graphed in that manner,
experimental brackets on the calcite-saturated liquidus

ought to permit it to be a straight line with a slope of
WCa2+_La3+ and an intercept of AH°,_(calcite) = 31.5 + 1

kJ/mol. The limited data are consistent with regular-so-

lution behavior and Wc,_÷_t_+ = +80 _+ 50 kJ/mol 2 (Fig.
2f, Table 4).

Solution of H20

H20 is important, both as a flux to permit melting of

carbonates at geologically reasonable conditions (Wyllie
and Tuttle, 1960) and as a constituent of the vapors as-
sociated with carbonatites (e.g., Rankin, 1975; Nesbitt

and Kelly, 1977; McKie, 1966; LeBas, 1977; Rubie and
Gunter, 1983). H20 is problematic within an ionic melt

model as it is not an ionic liquid. Further, the speciation
of H20 in ionic solutions may be affected by cation com-

plexation, formation of mixed anions (like bicarbonate),

and changes in intrinsic variables (like acidity and fo_)-
In addition, H20 does not behave as OH does in carbon-

ate-rich ionic melts; the calcite-saturated liquidus in
CaCO3-Ca(OH)2 is effectively straight and not inflected,
whereas the calcite-saturated liquidus in CaCO3-H20 is

strongly curved and inflected, concave up at high CaCO3
contents, and concave down at lower COCO3 contents

(Figs. 5 and 6, respectively, of Wyllie and Tuttle, 1960).
Even so, the solution of H20 in Ca-carbonate melts

can be described with a simple regular-solution model,
on the basis of the liquidus surface in the system CaCO3-

H20 (Wyllie and Tuttle, 1960, temperatures corrected by
-32 K per Gittins and Tuttle, 1964). I will assume that
H20 ionizes completely into hydroxide and hydronium
ions on solution in a carbonate melt:

2H20 _- H30 + + OH (14)

and so affects both the cation and anion solutions direct-

ly. The experiments of Wyllie and Tuttle (1960) were
done with excess vapor in most cases; because the com-

position of the vapor is unconstrained, I must assume
further that the mass of vapor was insignificant compared

with that of the solid (i.e., that the mass of H20 input to
the charge effectively represents the mass of H20 in the
liquid). With this speciation model, Equations 5 and 7

can be combined and reduced to yield
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-- {[RT ln(Xca2+,cati .... It" Xco]-,ani .... It)

-]- Wco] -OH-(1 -- Xco_-,ani .... 1t)2]/( 1 -- _fus)}

: Wfa2+_H30 +

(1 - XCa2+,cati .... 11) 2

T
1 -- --

T_us

m

+ AHf°us(calcite) (15)

comparable with Equation 13 above. Xca2+,cati .... It and

XCO32-,ani .... It have the same numerical values, because they
both arise from disproportionation of H20. Constraints
on the calcite-saturated liquidus in CafO3-H20 from

Wyllie and Tuttle (1960) are recast in Figure 2g in this
form, with the term in brackets on the ordinate and the

term attached to WCa2+_H3O+ on the abscissa. Wco_ -o.- is
from Table 4. For the model to be correct, the liquidus

surface must be representable as a straight line, with an

ordinate intercept of A/7°us(calcite) = 31.5 _+ 1 kJ/mol

and a slope of Wca2+_.3o+. Figure 2g shows that these cri-
teria are met for the ten experiments at lower abscissa

values, which have <40 wt% H20 (equivalent to X.2o -<

0.9). To match these experiments, WCa2+_H3O+ = 36 + 2
kJ/mol 2, which is high but not unreasonable compared

with other W values (Table 4).
It remains unclear how closely this model cleaves to

reality. Instead of a straight line in Figure 2g, one could
also fit a smooth curve through all the liquidus brackets,

inconsistent with regular solution behavior. It is entirely

possible that effects of formation of complexes, formation
of mixed anions, or violation of other assumptions are
hidden in the correlation of Figure 2g. If accurate, how-

ever, it suggests that dissolved H20 at high temperatures

in ionizing environments behaves as the ionic compound

hydronium hydroxide, H30+OH . These hypotheses about
H20 in carbonate magmas should be readily testable.

APPLICATIONS

Beyond the value of a theoretical understanding of car-
bonatite magmas, this regular-solution model can help

answer real geological questions involving carbonate
melts. Here, two types of questions are considered: the
relationships between the compositions of carbonatite

magmas and their vapors and the prediction of liquidus

equilibria.

Carbonatite magma and vapor

A fluid or vapor phase is commonly associated with

carbonatites, as shown by their fluid inclusions (e.g., Ran-

kin, 1975; Nesbitt and Kelly, 1977) and surrounding met-
asomatic rocks (fenites: e.g., McKie, 1966; LeBas, 1977;
Rubie and Gunter, 1983). An understanding of the vapor

phase is important for understanding the application of
experimental phase equilibria to natural carbonatites, the

origins of carbonatite metasomatism, and the effects of
volatile loss or gain on magma composition. Because the

vapor phase is fugitive, its composition is elusive. In rare

cases, its composition can be constrained by the mineral
assemblage of the carbonatite (Treiman and Essene, 1984),
but not without dispute (Gittins et al., 1990, 1992; Trei-

man and Essene, 1992).
A solution model for carbonate-rich melts provides a

link between carbonatite magmas and vapors. From the

composition of a carbonatite magma (e.g., its halogen

content), a solution model permits calculation of some
compositional constraints on the vapor in equilibrium

with the magma. Alternatively, given the composition of
a vapor phase (e.g., its H20 content), one can constrain

the composition of the magma.
F: Experimental calibration. Carbonatite magmas can

contain significant F. Most carbonatites contain fluora-

patite and some carry fluorite (CaF2); many other F-bear-
ing minerals may be present, e.g., pyrochlore, fluocerite

[(Ce,La)F3], bastnaesite [(Ce,La)(CO3)F], and amphiboles
(Hogarth, 1989). The natrocarbonatites of Oldoinyo

Lengai, Tanzania, also contain F-bearing nyerereite
[(Na,K)2Ca(CO3)2], and gregoryite [(Na2,Ca)CO3] (Peter-
son, 1990). Many fenites associated with carbonatites
contain fluorite, some in economic proportions. In ad-

dition, theoretical interest has recently focused on F be-
cause of the experimental observation that F is similar to

H20 as a flux to permit melting of carbonates at geolog-

ically reasonable temperatures (Gittins et al., 1990; Jago
and Gittins, 1991).

The behavior of F in carbonatite magma-vapor sys-

tems can be modeled by the reaction

F2 + CO32- _ 2F- + CO2 + 1/202 (16)

vapor melt melt vapor vapor

which describes the equilibrium distribution of F be-
tween carbonate melt and vapor. To calibrate the distri-

bution of F, one must derive the standard Gibbs free

energy of Reaction 16 in the temperature range of interest
(ignoring the effects of pressure on melt components),

A_O=-RTln( fc°2''ap°r'f_'vap°r ag "melt-) (17)
\ fF2,vapor aco_ ,melt/

where each a is the activity of a melt component and
each fis the fugacity of a vapor species. If all the fugac-
ities and activities can be determined at a given temper-

ature, the free energy of reaction is readily calculated.
The Gibbs energy of Equation 17 can be calculated

along the calcite + fluorite saturated liquidus in the sys-
tem CaF2-Ca(OH)2-CaC03, as drawn by Gittins and Tut-

tle (1964) from their 1-kbar experimental results (their

Fig. 4). The ratio of gas species fugacities in Equation 17
is buffered by the presence of solid calcite and fluorite,

F 2 + CaCO 3 _- CaF 2 + CO 2 + 1/202. (18)

vapor solid solid vapor vapor

Activities of melt species come directly from the analyzed
or inferred compositions of the melts, and activity coef-

z ? :,
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ficients come from the melt solution model. With

WOH--F--CO_- and WF -¢o_- as zero (Table 4), activity co-
efficients are given as

RT In 3'co_- = WCO2--OH-(X_)H -}- XF-XoH )

and

- WF-_o.-(XF-Xo. ) (19a)

RT In 3'F = WF--OH (XgH- + Xco] XoH-)

-- Wco_-_OH (Xco_-XoH-) (19b)

from Equation 5. To obtain AG o in Equation 17, the gas
fugacity ratio is calculated using thermochemical data
from Chase et al. (1974) and Robie et al. (1979), and melt
component activities are calculated from measured or in-

ferred melt compositions (Gittins and Tuttle, 1964) and

activity coefficients (Eq. 19), with W values from Table
4. Taking seven points from the liquidus of Gittins and

Tuttle (1964) from 1153-848 K yielded a regressed free
energy equation of

AG ° = --412.0 (+2.8) -- 0.091 (+0.003)T(kJ/mol) (20)

with r 2 = 0.995, where the uncertainties are the 2a stan-

dard errors of regression. If the regular-solution model
here is accurate, this calibration should be valid for all

Ca-rich carbonate-rich melts, whether in synthetic or
complex natural systems. The free energies of reaction

are negative and imply that Reaction 16 favors strongly
the production of fluoride ions and carbon dioxide gas.
Thus, the vast proportion ofF in Ca-rich carbonatite melt-

vapor systems is in the melt, and the vapor contains little
F (Treiman and Essene, 1992).

Hydroxide: Experimental calibration. Carbonatite

magmas may contain significant H20, as suggested by
Wyllie and Tuttle (1960) to explain how carbonate-rich

melts might form at reasonable geological temperatures.
Since that time, the importance of H20 as a flux in car-

bonatite magmas has gained wide acceptance, although
some experiments suggest that F may be equally effective

as a flux (Gittins et al., 1990; Jago and Gittins, 1991).
The exchange of H20 and OH between carbonatite

magma and vapor systems can be modeled, in the same
manner as F above, by the reaction

H20 + CO32- _ 2OH- + CO2. (21)

vapor melt melt vapor

Unlike the case for F, there is no dependence here on

fo2- Calibration of this equilibrium requires derivation
of its standard Gibbs free energy in the temperature range
of interest (if one ignores the effects of pressure on melt

components),

AG ° = -RTln( fc°2'va_°r • aZH-'me't) (22)

\ fHzO,vapor afo]-,melt/

where each a is the activity of a melt component and each

f is the fugacity of a vapor species. The Gibbs energies of

Reaction 21 can be calculated for compositions along the
calcite + portlandite [Ca(OH)2]-saturated liquidus in the

system CaF2-Ca(OH)2-CaCO 3(Gittins and Tuttle, 1964), the
same data set used for calibration of the carbonate + fluo-

rine exchange above. The ratio of gas species fugacities in
Equation 22 is buffered by the presence of solid calcite and
portlandite and the equilibrium

H2O + CaCO 3 _ Ca(OH)2 + CO2. (23)

vapor solid solid vapor

Activities of melt species are calculated from analyzed or

inferred melt compositions and regular-solution activity

coefficients. With Won -F -co_- and WF--CO_ as zero (Ta-
ble 4), activity coefficients are given as

= 2 2 XF_ XOH_ )RT In 3'co_- WCO3--OH-(X'oH- -_-

-- WF- OH-(XF-XoH- ) (24a)

and

RT In 3%.- = WF _on-(X2v - + Xco]-XF )

+ WCO]-_OH-(X_o]- + Xco]-XF-) (24b)

from Equation 5. To obtain AG ° in Equation 22, the gas
fugacity ratio is calculated using thermochemical data from
Chase et al. (1974) and Robie et al. (1979), and melt com-
ponent activities are calculated from measured melt com-

positions (Gittins and Tuttle, 1964). Activity coefficients
(Eqs. 24a and 24b) using W values are from Table 4. The

calcite + portlandite liquidus spans only a small tempera-
ture interval, 926-848 K (Gittins and Tuttle, 1964). Taking

compositions at the end points and one intermediate point
yields a regressed free energy equation of

AG o = 79.2 (+3.1) -- 0.038 (+0.003)T(kJ/mol) (25)

with r2 = 0.995, where the uncertainties are only the 2a
standard errors of regression. This calibration is probably

more uncertain than the regression errors would indicate,
as potential experimental errors have not been included,

and the temperature range of calibration is small.
However, the positive free energy for Reaction 21 im-

plies that H20 is preferentially partitioned into the vapor
phase and that a HzO-rich vapor would coexist with a

relatively HzO-poor carbonatite magma. If the regular
solution model here is accurate, this calibration should
be valid for all Ca-rich carbonate-rich melts, whether in

synthetic or complex natural systems.
An example from nature. Within the Oka carbonatite

complex, Quebec, Canada, is the Husereau carbonatite

dike. That unique dike contains such a restrictive mineral

assemblage that Treiman and Essene (1984) were able to
calculate the composition of its F-poor vapor phase and
infer by difference that the vapor was mostly nEO. Gittins

(1989) and Gittins et al. (1990) criticized their conclu-
sion, asserting a much more prominent role for F. One
source of disagreement was the abundance of F in a car-

bonatite magma compared with its vapor (Treiman and
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Essene,1992;Gittins et al., 1992).Applicationof the
regular-solutionmodel for carbonate-richmagmascan
resolvethis issue.

To calculatetheconcentrationsof fluorideandOH in
theHusereaucarbonatitemagma,onecanapplyReac-
tions16and21usingthecalibrationinEquations20and
25.TreimanandEssene(1984)inferredthat theHuser-
eaucarbonatitemagmaequilibratedwithcalcite,apatite,
oxides,and otherphasesat 913 K and 1 kbarof total
pressure.Thegasphasewascalculatedto contain1l0
barsCO2; by difference, H20 was inferred to account for
882 bars of the total vapor.

To calculate the abundance of OH in the Husereau dike

magma, one can use the calculated composition of the
Husereau gas phase in Reaction 21. Applying the cali-

bration of Equation 25 yields

2

aon .melt 2.8 X 10 -3. (26)
aco 2- ,melt

If one assumes the magma contained no abundant ion

species besides carbonate and hydroxide, the regular-so-
lution activity model (Eq. 5, Table 4), allows Equation
26 to be satisfied by XoH _ 0.07 and Xco_ _ 0.93. This
ratio is consistent with the absence ofportlandite or other

hydroxides as magmatic phases (viz., Gittins and Tuttle,
1964) and affirms that carbonatite magmas were much
poorer in H20 than their equilibrium vapors (here 882

bars H20 and 110 bars CO2). There is no mineralogic
evidence for this abundance of magmatic OH in the Hu-
sereau dike, and one may speculate that it was expelled

during solidification as a H20-rich vapor phase. Some of
this H20-rich vapor might have been consumed in the

pervasive conversion of magmatic periclase in the dike
to brucite (Treiman and Essene, 1984), but most of it
must have left the dike completely.

Fugacities of F-bearing gas species were calculated as-

suming F-OH exchange equilibria between apatite in the
dike rock and vapor. From the inferred fo2 of the QFM
buffer (10 -18"6 bars), Treiman and Essene calculated that

the gas fugacity of F2 was 10 43.9bars. From the temper-
ature, gas fugacities, and Equation 20, one can now cal-
culate the ratio of specie activities in the Husereau car-
bonatite melt as

2

av-,melt _ 4.8 × 10 9. (27)
aco_ .melt

If the activity of carbonate in the melt was approximately

unity, the activity of fluoride was 7 × 10 -5. The anion
fraction of fluoride in the melt can be calculated knowing
the anion fraction of carbonate in the melt, 0.93, as cal-

culated above. This value gives a fluoride activity of 6.7

x 10 -5 (Eq. 27), a fluoride activity coefficient of 1.06 (Eq.
19b), and so a fluoride anion fraction of 6.3 x l0 -5.

Clearly, this is not much fluoride in the melt, and it is
consistent with the lack of F-bearing minerals other than

apatite in the dike. If the thermochemical analysis so far

is correct, the only way for the melt to have had more F

is for it to have been present in complexes, like molecular

HF, SiF_ , etc. There is no evidence for or against the
presence of such fluoride complexes in the Husereau dike.

Carbonate magma on the surface of Venus

Carbonate-rich magmas may not be unique to the Earth,
but may be of broader planetary importance, possibly

occurring on Mars (Longhi, 1991) and Venus. The tem-
perature and pressure of the Venus surface could be con-
ducive to carbonate volcanism (Sill, 1984), and Magellan

radar images of long sinuous channels on the Venus sur-
face (presumably H20-free) have given that idea new life

(Baker et al., 1992; Komatsu et al., 1992; Kargel et al.,
1993). The possibility of carbonate magmas on Venus
must be considered in the context of its surface condi-

tions: a global mean temperature of 740 K and a mean

atmospheric pressure of 95 bars (Seiff, 1983); the atmo-
sphere consists of 96.5% CO2, 3.5% N2, and -150 ppm
SO2 (Fegley et al., 1992). The Venera and VEGA chem-

ical analyses of the Venus surface are consistent with
tholeiitic or alkaline basalt, with two analyses suggesting
felsic or peralkaline compositions (Barsukov, 1992).

Melting of calcite + anhydrite. Near-surface rocks on
Venus are inferred to contain both calcite (CaCO3) and

anhydrite (CaSO4) as weathering products of igneous
minerals (Fegley and Prinn, 1989; Fegley et al., 1992);
alkali carbonates and sulfates are not predicted to be sig-

nificant in the weathering assemblage. Might calcite +

anhydrite be molten under Venus surface conditions, or
might calcite + anhydrite melt be formed under reason-
able geological conditions (e.g., volcanic or impact heat-

ing)? On Venus, is it also possible that carbonate-sulfate
magmas might be generated by liquid immiscibility from
volatile-rich basaltic magma (Kargel et al., 1993)? An-

swering these questions requires knowing the liquidus
surface in the system CaCO3-CaSO4, which can be cal-

culated using the regular solution model developed here.
Melting relations in the system CafO3-CaSO 4 can be

modeled with the thermochemical parameters derived and

compiled here and compared with the experimentally de-
termined phase equilibria of Fuerstenau et al. (1981). To

calculate the liquidus surface, one requires heats of melt-
ing, temperatures of melting, solution models for calcite

and anhydrite, and a solution model for their melts. Melt-
ing data for calcite are calculated for 100 bars from data
in Tables 1 and 2. The melt solution of CO32 and SO_-

is essentially ideal (Table 4). It is assumed that calcite
and anhydrite are pure phases, that the AH°us(anhydrite)

is 28 kJ/mol, for a 1-bar melting temperature of 1723 K
(Robie et al., 1979), and that this AH°us(anhydrite) is rel-
evant to 100 bars pressure. At 1468 K, anbydrite inverts

to a high-temperature phase, which melts at 1737 + 4 K

(Rowe et al., 1965). The lower temperature chosen for
this calculation is estimated for metastable melting of the

lower temperature anhydrite polymorph, which would be
stable at the Venus surface.

, "?
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From these data and Equation 7, one can map the li-
quidus surface in CaCO3-CaS04, ignoring the polymor-

phic transition in solid CaSO4 (Fig. 3). The calcite-satu-
rated and anhydrite-saturated liquidus curves are
calculated independently. The intersection of the curves

(the stable coexistence of calcite, anhydrite, and melt) at
1250 K is the eutectic point, the lowest temperature at

which melt can exist in CaCO3-CaS04. The eutectic tem-
perature is 335 K below the melting temperature of cal-

cite alone and 473 K below the melting temperature of
anhydrite alone.

Predicted melting relations in CaCO3-CaS04 are in
partial accord with the experimental results of Fuerstenau

et al. (1981), as shown in Figure 3. Fuerstenau et al. in-
ferred phase relations by differential thermal analysis on
sealed charges. They had little control on pressure, which

was inferred to vary between 15 and 35 bars. Fuerstenau
et al. did not analyze their experiment products, and so

their identification of solid phases is completely by infer-
ence.

For the CafO3-rich calcite-saturated limb of the liqui-
dus (Fig. 3), there is excellent agreement between the pre-
dictions here and the experiments of Fuerstenau et al.

(1981). However, prediction and experiment do not agree
for the CaSO4-saturated limb of the liquidus. The exper-
imental determination of this limb, inferred to be anhy-
drite + liquid (Fuerstenau et al., 1981), is not consistent

with Trus(anhydrite) = 1723 K (viz., Robie et al., 1979)
but rather with Trus _ 1550 K (Fig. 3). Using the latter
Tfus implies (by means of Eq. 6) that the CaSO4-rich solid

has AHros per cation of --28 kJ/mol, which is reason-
able for an ionic compound. The source of these dis-

crepancies is unclear; experimental error is possible,

but a polymorphic transition in solid CaSO 4 is unlikely
(Rowe et al., 1965). To me, it seems likely that the
liquidus phase detected by Fuerstenau et al. (1981) is
a previously unreported intermediate mixed-anion com-

pound, for instance Ca3(804)2(CO3) , that melts incongru-
ently to anhydrite + liquid.

Applying either predicted or experimental liquidus sur-
faces to Venus, one can see that mixtures of calcite +

anhydrite will not melt at normal Venus surface temper-
atures, 660-760 K (Seiff, 1983). To melt a mixture of

calcite + anhydrite on the Venus surface would require
temperatures at least 500 K above ambient, which could

easily be supplied by impact heating or basaltic volca-
nism (solidus temperatures near 1300-1400 K). Addi-
tional components, like alkalis or halides, would decrease

the melting temperature, but the availability of these
components is not clear. Similarly, the eutectic temper-

ature calculated here does not invalidate the speculation
that carbonate-sulfate magma could exsolve from basaltic
magmas (Kargel et al., 1993).

F in Venus carbonatites. The near-surface atmosphere

of Venus contains approximately 5 ppb of HF (Fegley et
al., 1992), and one may inquire whether this much F in
the atmosphere would significantly affect the composi-
tions of ionic melts on the Venus surface. The model for

fluorine-carbonate exchange between carbonate melts and

vapor in Reaction 16 can be applied here, assuming that
its free energy calibration (Eq. 20) can be extrapolated to
740 K from its minimum calibration temperature of 848

K. With thermochemical data from Robie et al. (1979)
and the near-surface Venus atmospheric abundances of

CO = -20 ppm and H20 = 20 ppm, the reactions

2HF + CO2 _ F2 + H20 + CO (28a)

and

2CO2 _ 2CO + 02 (28b)

imply that fF2 = 1.1 X 10 47 bars and fo2 = 3.5 x 10-22

bars, within the magnetite stability field in Fe-O (Fegley
et al., 1992). From Reaction 16 and its calibrations in

Equations 17 and 20, one can now calculate the activity
of fluoride in a carbonate-rich melt in equilibrium with
the Venus atmosphere. With the derivation of Equation
21, fluoride and carbonate activities are related as

2

av-:melt 4.4 X 10 5. (29)
aco 2- ,melt

This implies that fluoride activity in a carbonate melt is,

at most, 7 x 10 -3. The fluoride activity coefficient is
unity in the absence of OH (Eq. 19b), implying the same
value for the anion concentration of fluoride; this abun-

dance corresponds to a F abundance of approximately
0.1 wt% (calculated for a melt containing only Ca 2÷,
CO32 , and F ). Thus, F from the atmosphere would be
strongly concentrated in carbonate-rich melts on the Ve-

nus surface. However, the proportion of F would be so

low as to have little effect in stabilizing those melts (Jago
and Gittins, 1991).

Caveats

Caution must be exercised in applying this regular solu-

tion model of carbonate magmas, particularly in the preci-
sion of its implications. Many parameters in the model are

poorly known, including heats of melting for magnesium
carbonate and W interaction parameters for all cations with

Mg 2+. The Temkin regular-solution model is only a first
approximation to real behavior (Andersen and Kleppa, 1976)

and can undoubtedly be improved given additional high-
quality data. Finally, there remain the possibilities of mul-

tiple melt structures in Ca-rich carbonate magmas and of
previously unreported liquidus phases in unexplored sys-

tems. It is hoped that this model can serve as a starting
point for a deeper understanding of the thermochemical
behavior of carbonate-rich magmas.
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